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Person re-identification (re-ID) has made substantial progress in recent years; however, it is still chal-
lenging to search for the target person in a short time. Re-ID with deep hashing is a shortcut for that
but, limited by the expression of binary code, the performance of the hashing method is not satisfactory.
Besides, to further speed up retrieval, researchers tend to reduce the number of feature bits, which will
cause more performance degradation. In this paper, we design the attribute-based fast retrieval (AFR),
which leverages the attribute prediction of the model trained in a binary classification manner tailor-
made for hashing. The attribute information is also used to refine the global feature representation by
an attribute-guided attention block (AAB). Then, to fully exploit deep feature to generate the hash codes,
we propose a binary code learning method, named self-distilling smooth relaxation (SSR). In this method,
a simple yet effective regularization is presented to distill the quantized knowledge in the model itself,
thus mitigating the lack of semantic guidance in the traditional non-linear relaxations. We manually label
attributes for each person in dataset CUHK03 and evaluate our method on four authoritative public
benchmarks (Market-1501, Market-1501+500K, CUHK03, and DukeMTMC-reID). The experimental
results indicate that with the SSR and AAB, we surpass all the state-of-the-art hashing methods. And com-
pared with reducing the feature bits, the AFR strategy is more effective to save search time.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Person retrieval, or person re-identification (re-ID), is aimed at
finding targeted people from the non-overlapping cameras. The
changes in lighting, pedestrian posture, and angles of view will
incur evident changes in the appearance of the same person. With
the rapid development of convolutional neural networks (CNN)
and big data, deep learning methods [4,21,19,27,53,54,57] become
the most commonmeasures for feature extraction. However, in the
retrieval process, directly calculating the similarity of raw high-
dimensional features between gallery and query, is computation-
ally intensive. And storing these floating-point features is also
costly to memory resources. Hashing [8,7,55,56] is a technique to
encode high-dimensional features into compact binary codes while
preserving the similarity of images. In the hashing methods, fast
image retrieval can be carried out by computing the Hamming dis-
tance between samples, which dramatically decreases computa-
tional costs.

Two factors could significantly affect the performance of hash-
ing re-ID, namely, the feature representation and hash relaxation.
The former refers to the ability of the network to form discrimina-
tive expression for each pedestrian, compared with floating-point
features of non-hashing methods, hashing binary codes have an
inherent disadvantage in expression ability. As to the hash relax-
ation, i.e., in retrieval, for calculating the similarity metric in Ham-
ming space, features must be quantified to discrete values such as
�1, 0, or +1. In the training process, to avoid optimizing the non-
differentiable loss function in Hamming space, neural network out-
puts are relaxed to binary-like real values. But, the process of learn-
ing binary-like codes is a shallow learning procedure and cannot
fully exploit the representation, thus causes information-loss of
features and compromises the performance [20].

There is another issue we concern in hashing re-ID: to further
accelerate the retrieval, the most common way used is to reduce
the bit-length of hash codes. But as we can see in these hashing
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researches [16,22,3,2], as the number of bits decreases, the re-ID
accuracy would sharply drop. Even worse, the relaxation and bin-
ary quantization in hashing inevitably lead to information-loss,
making it even harder for hashing re-ID to achieve the same perfor-
mance as non-hashing methods.

Pedestrian attribute, containing detailed local descriptors, are
often exploited as mid-level human semantic information of the
pedestrian [26,14,28]. However, we find that after modifying
attribute learning to binary classification settings, the attribute
information can be conveniently used to coarsely screen pedes-
trians in the hashing scenarios. Different from person re-ID
where the IDs in the training set and gallery set are non-
overlapping, labels of the attribute in training and testing are
identical. This motivates us to impose the attribute learning into
a multi-task hashing model, and leverage the attribute predic-
tion to provide effective description in different granularity from
ID features.

Therefore, for the purpose of faster and stronger hashing person
re-ID, in this paper, we present a self-distilled fast hashing re-ID
framework. Specifically, we first propose an attribute-based fast
retrieval (AFR) strategy to speed up the retrieval. In AFR, pedestrian
attributes are learned in a binary classification manner, and serve
as the coarse-grained identity information to cooperate with
fine-grained features in the retrieval. Unlike most existing methods
simply embedding attribute learning into the classification task.
We adopt two types of attention mechanisms from aspects of spa-
tial and channel in the attribute learning, to overcome the re-ID
performance deterioration caused by heteroscedasticity (a mixture
of different knowledge granularity and characteristics) learning
problem [33]. Then, to fully exploit deep feature representations
to generate the hash codes, we propose a binary code learning
method, named self-distilling smooth relaxation (SSR). In this
method, a simple yet effective regularization is presented to distill
the quantized knowledge of the model itself, thus mitigating the
lack of semantic guidance in the traditional non-linear relaxations.
Moreover, since the SSR imposes a softer feature constraint than
traditional relaxations, it can especially preserve the feature dis-
crimination dividend brought by batch normalization (BN), which
is a commonly used tool in the person re-ID. Finally, to make our
evaluation more comprehensive, following the annotation stan-
dard on Market-1501 and DukeMTMC-reID, we manually label
attributes for each person in dataset CUHK-03 and evaluate our
framework on four datasets: Market-1501, Market-1501+500k,
Duke-MTMC-reID, CUHK03.

The main contributions can be summarized as follows.

(1) We propose the attribute-based fast retrieval (AFR) strategy
to speed up the retrieval for hashing person re-ID. With the
binary attribute learning modification tailor-made for hash-
ing re-ID, the AFR shortens the retrieval time more effec-
tively than reducing the number of bits;

(2) We propose a binary code learning method for hashing re-ID
named self-distilling smooth relaxation (SSR), which pro-
gressively distills a model’s own knowledge to soften hard
binary-like relaxation targets. With the refined semantics
from the deep features, the SSR learns more discriminative
capability of hash codes than traditional relaxation
functions;

(3) The attribute information is also used to refine the global
feature with a proposed attribute-guided attention block
(AAB), which leverages the spatial properties and high-
level semantic cues contained by attribute, to help to
enhance the feature representation;

(4) To reach a more comprehensive evaluation, we manually
annotate 27 attributes of pedestrians in the CUHK03 bench-
mark. Comprehensive experiments on four public bench-
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marks (Market-1501, Market-1501+500K, Duke-MTMC-
reID, and CUHK03) confirm the efficacy of the proposed
approach over state-of-the-art methods.

The rest of this paper is organized as follows. In Section 2, we
review the related work. In Section 3, we describe the flow of our
entire algorithm. In Section 4, we describe the proposed self-
distilling smooth relaxation. The attribute-based fast retrieval is
introduced in Section 5. Loss function is presented in Section 6.
Experimental results are presented in Section 7. Finally, we con-
clude the paper in Section 8.
2. Related works

In this section, existing works on person re-ID are reviewed in
Section 2.1. Since our work focuses on deep hashing re-ID and
employs the pedestrian attributes, we also review related studies
of hashing methods and attribute learning in Sections 2.2 and 2.3.

2.1. Methods of person re-ID

The person re-ID approaches can be classified into two streams:
seeking robust pedestrian feature representation
[41,13,21,44,19,29] and learning discriminative distance metrics
[1,23,42]. The first stream concentrates on building feature
descriptions, which preserves the identity information in various
postures across different cameras. The second stream generally
designs proper metric distances to minimize the intra-class dis-
tance while maximizing the inter-class distance.

For feature representation, the literature [41] proposed a Sia-
mese network using two sets of convolutional layers and fully con-
nected layers, which jointly learned the colour features, texture
and similarity metric. In [21], the authors proposed the multi-
filters neural network for feature extraction on financial time series
samples and price movement prediction task. Parted-based meth-
ods [13,29,44], which are designed to focus on local regions and
capture fine-grained cues, are expected to be more effective and
robust for feature representation. [13] employed human semantic
parsing network to harness local visual cues. Semantic segmenta-
tion also helps to reduce the disturbance of complex background.
[44] estimated the dense semantics first, which can be used to
warp the original RGB image to the representation in UV space.
[37] proposed an attention-based method for visible-infrared per-
son re-ID. Method such as [40] also proposed a PurifyNet to tackle
the label noise problem. For unsupervised learning of re-ID, [39]
studied the unsupervised embedding learning problem by learning
representation without using any category labels. In [29], the
authors provided a compact network named part-based convolu-
tional baseline (PCB) for person re-ID which horizontally divides
the feature map into several stripes. For the sake of lower compu-
tation and memory cost, which is also the original purpose of the
hashing technique, we use PCB as the basic network structure to
construct our framework. For metric learning, in [1], the authors
split the metric into independent colour and texture components.
Liu et al. [23] built a method on reciprocal nearest neighbour
search. Yu et al. [42] introduced an unsupervised re-ID method
based on asymmetric clustering. In this paper, we adopt the hard
example mining proposed in [10] to do the metric learning, which
is a variant of the triplet loss.

2.2. Hashing methods

The traditional learning-based hashing methods usually deal
with the hand-crafted image features, which can hardly obtain
optimal hashing representations for semantic structures in images.
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To effectively capture the semantic relationships between images,
many researchers have drawn support from deep learning to hash-
ing. Xia et al. [36] adopted a two-stage deep hashing algorithm
CNNH. The first stage learned the approximate hash code, and
the second stage learned the hashing functions and feature repre-
sentations of an input image. In [46], Zhao et al. proposed Deep
semantic ranking based hashing to preserve multi-level semantic
similarity between multi-label images. Zhang et al. [43] posed
hashing learning as a problem of regularized similarity learning.
Similar frameworks such as DCH [32] and DSH [20] were also pro-
posed and both achieved state-of-the-art performance. In DSH
[20], the authors proposed a regularization relaxation method
and gained encouraging performance for image retrieval. There
are also hashing researches specifically designed for person re-ID.
Based on discrete alternating optimization, [3] proposed a joint
hashing person re-ID learning framework for subspace projection
learning and binary coding. [22] proposed an adversarial binary
coding to fit the feature distribution to the expected binary one
by optimizing the Wasserstein distance. More recently, [16]
focused on the consistency preservation of hash code and proposed
a deep hashing framework for person re-ID, which improved
robustness of both hash code and high-dimensional feature.
2.3. Attribute learning

Attributes are usually viewed as a mid-level semantic descrip-
tion for feature representation learning. Su et al. [28] considered
multiple cameras as related tasks and learned a discriminative net-
work by multi-task attribute learning. Khamis et al. jointly opti-
mized the triplet loss for re-ID and attributes identity loss in
[14]. In [26], fine-tuned CNNwas embedded for attribute classifica-
tion. Then, Lin et al. [18] and Chen et al. [6] followed the CNN based
attribute learning approach and both achieved competitive results.
Lin et al. [18] manually annotated the Market-1501 [47] and
DukeMTMC-reID [49] datasets with attribute labels. For each ID,
there is an adequate number of training samples for attribute
learning, which the other attribute datasets do not have. In this
paper, we follow the label criterion in [18] and annotate 27 attri-
butes for another authoritative re-ID dataset CUHK03.
3. General pipeline

The general pipeline of the proposed framework is shown in
Fig. 1. During training, each pedestrian image is first fed into the
backbone network. The architectures after the second layer of the
backbone are copied for generating a pair of feature maps, which
are used to construct the global–local feature representation of
teacher branch and student branch. The student branch will distill
binary semantic knowledge from the teacher branch as the training
proceeds. In each branch, the global feature is refined by attribute-
guided attention block (AAB) to emphasize meaningful pedestrian
body parts. The binary attribute learning is conducted on the global
description vector, and both global and local vectors are imposed
with the self-distilling smooth relaxation (SSR), ID classification
learning, and triplet hard example mining. In the testing, predicted
attribute probabilities and ID features are quantified to hash codes,
which are then used to construct the attribute-based fast retrieval
(AFR).
4. Quantized semantic self-distillation

In this section, we describe the global–local feature extraction,
and the self-distilling smooth relaxation.
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4.1. Global–local representation

We use a classification network as the backbone to rapidly build
the retrieval framework, and employ the ResNet [9] as the back-
bone considering its superior performance and relatively concise
structure. Besides, for the sake of lower computation and memory
cost, which is also the motive of hashing technique, we choose a
simple yet strong method part-based convolutional baseline
(PCB) [29] as our basic network to obtain the rough local represen-
tation. As shown in the training process in Fig. 1, we use two
branches to generate the teacher binary descriptor (the upper
branch) and student relaxed descriptor (the lower branch). In each
branch, the feature map is first horizontally cut into 6 stripes as
local features. Based on it, we impose the global representation
refined by AAB. With a 1� 1 convolution (which is not shown in
Fig. 1 for brevity) to reduce the dimensionality, we get the teacher
binary descriptor St ¼ St

L; S
t
G

� �
, which consists of local features

St
L ¼ stL1;

�
stL2; . . . ; s

t
L6

�
and global features St

G ¼ stG
� �

. Similarly, the
student descriptor is noted as Ss ¼ Ss

L; S
s
G

� �
.

4.2. Self-distilling smooth relaxation

In the hashing methods, binary feature descriptors are sorted by
Hamming distance in retrieval. Still, in the training process, the
binary values cannot be directly optimized with the standard back-
propagation algorithm. While due to the discrepancy between
Euclidean space and Hamming space, the real-valued learned fea-
tures are suboptimal for retrieval. Thus, relaxation, namely,
appending a binary-like hidden layer before the classifiers, is com-
monly used in the training process. These relaxations appear as
non-linear activation functions such as Sigmoid, Tanh or Hardsig-
moid, whose outputs are values from 0 to þ1, or �1 to þ1. In the
testing end, relaxed features are quantized to binary code for
retrieval.

As shown in Fig. 2, we preserve one batch of trained features St

of the images, and plot the distributions of St under four types of
relaxations. We can see that as these saturated non-linear func-
tions work, rigid distribution constraints restrict the distributions
of these feature values into a more narrow scope than original fea-
tures. However, we think these constraints also narrow the expres-
sion space of features and cause information loss. One basic
assumption of our algorithm is that the learning of binary-like fea-
tures should not only be constrained by rigid distribution regular-
ization, but also supervised by more semantic information. Based
on this assumption, we develop a self-distilling smooth relaxation.
As shown in Fig. 1, the teacher descriptor St is first quantized to
hashing binary codes without relaxation of any nonlinear function.
For each element s in St , the quantization is performed as:

s0 ¼ 1; s > 0
�1; s 6 0;

�
ð1Þ

After quantifying the teacher descriptors St into S
t , we transfer

the binary semantic knowledge from St to the student descriptor
St , which is then used for constructing identity representation of
pedestrian image in retrieval. In this way, we soft the optimization
target from rigid distribution regularizing to binary semantic
learning, and the real-valued hash codes are encouraged to
approach the desired discrete values effectively. The distilling is
implemented with a L1 loss:

Ld ¼ kSt � Ssk1; ð2Þ
where k � k is the L1-norm of vector, the S

t and Ss are both vectors
concatenated from their own global–local descriptors. In the retrie-
val process, the concatenated student descriptor Ss is also quantized



Fig. 1. The general pipeline of proposed framework.

Fig. 2. The distributions of re-ID model output features(without BN). (a) is the
distribution of non–hash features on Market-1501 dataset. (b), (c) and (d) are
respectively the distribution of features that relaxed by the nonlinear function
Sigmoid, Tanh and Hardsigmoid.
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in the manner of Eq. (1) and used as ID representation of pedestrian
to conduct the Hamming distance ranking.
5. Attribute-based fast retrieval

This section describes the binary classification attribute learn-
ing, fast retrieval, and the attribute-guided refinement to global
information.
5.1. Binary attribute learning and fast retrieval

In order to make use of attribute prediction to accelerate the
retrieval in our hash framework, we replace the classification attri-
bute learning with the binary classification attribute learning. As
shown in Fig. 3, take Market-1501 as an example. There are 27
attributes annotated including 26 attributes with two categories
(such as gender: male/female, hair length: long/short, etc.), and
one attribute with four categories (age: young/teenager/adult/
old). Different from the standard classification learning, we use
binary classification settings and consider each attribute as an
114
independent binary classification problem. We formulate the pre-
diction of age as four binary classification tasks: young-yes/no,
teenager-yes/no, adult-yes/no, and old-yes/No. Then the attribute
hair length is modified to longhair-yes/no, etc. As shown in
Fig. 3, a Sigmoid activation is imposed after each FC layer of classi-
fication branch to fit the 0–1 prediction task. Finally, we have 30
binary classifications for attribute learning. In the training, each
attribute’s leaning is implemented with a fully-connected layer fol-
lowed by a Sigmoid function, and the binary cross entropy (BCE)
loss. Let D ¼ x1; l1;a1ð Þ; . . . ; xN; lN;aNð Þf g be the pedestrian training
set, where xi; li and ai denote the i-th image, its identity label,
and its attributes annotations. N is the total number of images.
We can divide D into two parts: DL ¼ x1; l1ð Þ; . . . ; xN; lNð Þf g and
DAttr ¼ x1;a1ð Þ; . . . ; xN;aNð Þf g, which denote identity labelled set
and attribute labelled set (note that DAttr and DL share the common
pedestrian images xif g). Assume that the output of one attribute’s
FC+Sigmoid layer is z ¼ z0; z1½ �(two categories yes:1 and no:0), the
probability of assigning sample x to the attribute class j 2 0,1 can
be written as:

p jjxð Þ ¼ exp zj
� �

P1
n¼0 exp znð Þ

; ð3Þ

for brevity, we omit the correlation between j and x. So, the overall
binary cross entropy (BCE) is formulated as:

Lattr Si;aið Þ ¼ � 1
30

X30
e¼1

X1
j¼0

log p jð Þð Þq jð Þ: ð4Þ

Where 30 is the total number of attributes. Let ya be the ground-
truth of this attribute label, so that q yað Þ ¼ 1 and q jð Þ ¼ 0 for j– ya.
Si and ai are the feature descriptor used for attribute learning and
attribute annotations of xi, respectively. In testing, the proposed
attribute-based fast retrieval consists of a fast attribute coarse
selection and an ID features-based search. The predicted probabil-
ities of attributes are quantized to binary codes. Assume that the
predicted attributes probability set of one image is
z ¼ z1; z2; . . . ; z30½ �, in which each vector zv ¼ zv0; zv1½ � is trans-
formed to a scalar:

z0v ¼
1; zv0 > zv1

�1; zv0 6 zv1

�
: ð5Þ

The quantized attribute probabilities serve as the attribute bin-
ary codes Cattr for the first-stage retrieval. The Ss is quantized to ID
binary codes C ID by Eq. (1) for the second-stage retrieval. Specifi-
cally, for each search we have one target query, let Cq

attr;C
q
ID

� �
denotes the hash codes of this query image, and the corresponding



Fig. 3. The diagram of classification attribute learning, proposed binary classification attribute learning, and the attribute-based fast retrieval (AFR).
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codes of the all gallery image are denoted as Cg
attr;C

g
ID

� �
. First, we

choose the attribute hash codes Cq
attr and Cg

attr to calculate SIMattr

for the first-step similarity measurement:

SIMattr ¼ disthamC
q
attr;C

g
attr: ð6Þ

Where distham is the Hamming distance matrix of vectors. We
rank the result and select the first w candidates (the closest w gal-
lery images to the query). Then, the selected gallery’s ID features
Cg w
ID are used to do the second-stage search with query ID features

Cq
ID by SIMID:

SIMID ¼ disthamC
q
ID;C

g w
ID : ð7Þ

Then the ranking and evaluation of rank-k (k can be 1, 5, 10) and
mAP [47] are conducted.
5.2. Attribute-guided attention block

Since attribute information (see in attribute annotations) such
as clothes color and length of upper/lower body locate in different
parts of the human body, it is difficult to learn attributes using hor-
izontally divided local features. So, in our framework, we conduct
attribute learning only on global descriptors. However, the attri-
bute and ID learning focus on different knowledge granularity,
simply combing them could impair the discrimination of ID fea-
tures. Therefore, we fuse attribute and ID recognition tasks not
only on loss level, but also on feature level. Inspired by the success
in attention mechanism [48,11,45], we propose to leverage the
spatial properties and high-level semantic cues contained by attri-
bute, to help filter out background interference and enhance the
feature representation.

Specifically, the attention mechanism module includes spatial
attribute attention block (SAAB) and channel attribute attention
block (CAAB). By exploring the long-range dependencies between
pixels or channels, these two blocks are expected to learn to cap-
ture local part structural information and highlight meaningful
channels during training. In SAAB and CAAB, as shown in Fig. 4,
to reduce the computation costs, we first do 1 � 1 convolution to
reduce the channels of input feature FIn and get two sets of feature
115
maps: FS1; FS2; FS32 RC=r�H�W for SAAB, and FC1; FC2; FC32 RC=r�H�W

for CAAB, and reshape them to RC=r�X (X ¼ H �W). Where r is a
reduction ratio to reduce the channel dimension, C;H, and W
respectively represent the number of channels, height, and width
of the feature map. Then we perform matrix multiplication
between FS1 and transposed FS2, and normalize the result to obtain
the spatial semantic relation map RS 2 RX�X . Simultaneously, FC2

and the transposed FC1 are multiplied to obtain the channel rela-
tion map RC2 RC=r�C=r . Specifically, the semantic similarity
between any two pixels is calculated as:
RS
ij ¼

exp f Ti f j
� �

PX
p¼1 exp f Ti f p

� � ; ð8Þ
where f i; f j 2 RC denote the features in the ith position of FS1 and jth

position of FS2
� �T

.Accordingly, the semantic similarity between any

two channels is calculated as:
RC
nm ¼

exp f Tnf m
� �

PC=r
l¼1 exp f Tnf l

� � ; ð9Þ
where f n; f m 2 RC denote the features in the nth and mth channel of
FC . Then, two relation maps are multiplied with FS3 and FC3 to obtain
the aggregated attention feature. After reshaping and a dimension-
ality raising 1�1 convolution, we get the outputs of two attention
blocks FS

Out and FC
Out . Finally, they are added together and serve as

a 3-D mask to dot with FIn:
Fref ¼ FS
Out þ FC

Out

� �
FIn þ FIn; ð10Þ
where Fref is the final refined global feature whose discrimination is
enhanced by spatial-channel attribute attention.



Fig. 4. The diagram of spatial attribute attention block and channel attribute attention block.
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6. Loss function

In our proposed framework, the learning task includes ID recog-
nition, attribute recognition, self-distilling smooth relaxation, and
metric learning. For metric learning, we adopt the hard example
mining triplet learning [10]. Specifically, in one batch, we ran-
domly select P persons and pick K images of each person, i.e. total
PK images. Our goal is to make the distance between features of
the same ID smaller than the distance between features of different
IDs. Given a training image xli whose ID is l, its feature descriptor is

Sl
i, then descriptors Sl

f for all f – i are regarded as positive examples

S posð Þ
i

n o
, and for all Se

j that e– l are negative examples denoted as

S negð Þ
i

n o
. For each Sl

i in this batch, we find its hardest positive and

negative example. The hard example mining triplet loss is given
by:

LTri ¼
XPK
i

sþ max
k¼1;...;K

Eu Si; S
posð Þ
i

� �
� min

k¼1;...;K
Eu Si; S

negð Þ
i

� �	 

; ð11Þ

where Eu �ð Þ means Euclidean Distance calculation, and s is margin
enforced between positive and negative examples. Simultaneously,

Sl
i is imposed with an identity classification loss. Assume that the

output of FC in ID classifiers is v ¼ v1; . . . ;v I½ �. The predicted prob-
ability of each ID label n is calculated as:

p njxð Þ ¼ exp vnð ÞPI
u¼1 exp vu

� � : ð12Þ

The cross entropy loss of ID classification is formulated as:

LID Si; l
� � ¼ �

XI

n¼1

log p nð Þð Þq nð Þ: ð13Þ

Let yl be the ground-truth ID label, so that q ylð Þ¼ 1 and q nð Þ ¼ 0
for all n – yl. In this case, minimizing the cross entropy is equiva-
lent to maximizing the possibility of being classified to the ground-
truth category. Thus, the final loss is:
116
L ¼ 1
14

X14
/¼1

LTri þ
1
14

X14
/¼1

LID þ a
7

X7
x¼1

Ld þ b
2

X2
l¼1

Lattr ð14Þ

where parameters a and b balance the contribution of self-distilling
regularization and attribute learning. Following the setting in [29],
the local parts number is set to 6. It should be noted that as shown
in Fig. 1, the ID learning and triplet learning are both conducted on
each vector in the student branch and teacher branch. And as
described in Section 5.2, the attribute learning is only implemented
on global vectors of two branches. Thus, the denominator 14
denotes the number of all vectors in two branches in Fig. 1, the
denominator 7 denotes the number of pairs made of one student
vector and one teacher vector. And the denominator 2 means the
number of vectors used to do the binary attribute learning.
7. Experiments

In Section 7.1, we introduce the datasets, protocol of evaluation,
and the implementation details. In Section 7.2, we compare our
method with the state-of-the-art. In Section 7.3, we evaluate our
method on large-scale benchmark. And in Section 7.4, the effec-
tiveness of self-distilling smooth relaxation is described. The abla-
tion study of the attribute-based fast retrieval is discussed in
Section 7.5. Finally, we study the generality of our framework in
Section 7.6.
7.1. Experimental settings

7.1.1. Dataset
We use four authoritative benchmarks to evaluate our method,

including Market-1501 [47], DukeMTMC-reID [49], CUHK03-NP
[51], Market-1501+500k [47]. Market-1501 has 12,936 training
images with 751 different identities. Gallery and query sets have
15,913 and 3,368 images, respectively, with another 750 identities.
DukeMTMC-reID includes 16,522 training images of 702 identities,
2,228 query and 17,661 gallery images of another 702 identities.
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CUHK03-NP [51] is a new training–testing split protocol for
CUHK03 and consists of 1,467 pedestrians, it provides 14,096 man-
ually labelled images and 14,097 DPM-detected images. In this
protocol, 767 identities are used for training and the remaining
for testing. The gallery sizes are 5,328 and 5,332 for labelled and
detected images. Market-1501+500k provides an additional
500,000 distractors recorded at another time, these distractors
are composed of background images and a large number of irrele-
vant pedestrians.

Annotations of the CUHK03 attributes: Lin et al. [18] labelled
27 and 23 pedestrian attributes for the Market-1501 and
DukeMTMC-reID datasets, respectively. For a more compre-
hensive evaluation of our method, following the attribute labelling
standard of [18], we manually annotate 27 attributes for each per-
son in CUHK03. These attributes are gender (male, female), hair
length (long, short), sleeve length (long, short), length of lower-
body clothing (long, short), carrying backpack (yes, no), carrying
handbag (yes, no), carrying other types of bag (yes, no),10 colours
of upper-body clothing (black, white, red, purple, yellow, grey,
blue, green, pink, brown) and 10 colours of lower-body clothing
(black, white, red, purple, yellow, grey, blue, green, pink, brown).
This annotation will be released later.

7.1.2. Evaluation protocols
For the evaluation of person re-ID accuracy, we use the cumula-

tive matching characteristic (CMC) and the mean average precision
(mAP). The evaluation packages are provided by [47,49]. For each
query, the average precision (AP) is obtained from its precision-
recall curve, and mAP is the mean value of average precisions
across all queries. For Market-1501 in comparison with the state-
of-the-art, both single query and multiple query settings are con-
sidered, all reported results in this paper are compared to the
state-of-the-art without re-ranking.

7.1.3. Implementation details
The input images are resized to 384�128 after random flipping

and erasing. Stochastic gradient descent is applied with a momen-
tum of 0.9. We set the batch size to 64 and the model is trained for
350 epochs. The base model is pre-trained ResNet50 [9]. In the pre-
ceding 20 epochs, the learning rate gradually increases from 0.001
to 0.01 with a warm-up trick [9]. Besides, the learning rates of all
pre-trained layers are the same as the base learning rate. The chan-
nel reduction ratio r in AAB is set to 8. The GPU we utilize is NVIDIA
GTX 1080Ti, the CPU is an Intel Xeon CPU E5-2609 (1.70 GHz), and
the RAM is 32 GB. We use PyTorch 1.0.0 to establish our whole
framework, training our framework on Market-1501 consumes
for nearly 145 min. In addition, When the performance results
we show do not include AFR, as shown in Table 1,2,3,4, 6, 7, 10,
our attribute codes do not participate in retrieval and all codes
are ID codes. In this case, when the total bit-length is set 2048,
512, and 128 in comparison with the state-of-the-art, each local
descriptor is set 256-bits, 64-bits, and 16-bits respectively, and
the global descriptor is set 512-bits, 128-bits, and 32-bits respec-
tively. We also construct a baseline for comparison. In this base-
line, we remove all of our proposed methods (SSR, AAB and AFR)
from our framework. Then, our whole framework can be denoted
as ‘‘baseline(SSR)+AAB+AFR”. The ‘‘baseline(Sigmoid)” denotes
the baseline with a relaxation of Sigmoid, and the ‘‘baseline(SSR)”
means the baseline with a relaxation of our SSR. When we use a
Sigmoid (which is the most commonly used in the existing hashing
researches) as the relaxation for comparison, batch normalization
(BN) layer is removed to obtain its best performance according to
the results in Section 7.4.

Based on the ablation studies on Market-1501 in Sections 7.4
and 7.5, in comparison with state-of-the-art in Sections 7.2 and
7.3, the super-parameters in our method are set a ¼ 0:3, b ¼ 0:3.
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The best w in AFR varies on different datasets, which is stated in
the discussion corresponding to each table. Additionally, to imple-
ment the variable-controlled approach, in each ablation study sec-
tion corresponding to one hyper-parameter, other hyper-parame-
ters set the values which lead to the best performance.

7.2. Comparisons with the state-of-the-art

We first compare our framework with 11 hashing state-of-the-
art methods, including CNNH [36], NINH [15], DSRH [46], StructDH
[35], DCH [32], DRSCH [43], PDH [52], HashNet [2], CSBT [3], ABC
[22], and CPDH [16]. Among them, CNNH [36] decomposes the
learning process into a stage of learning approximate hash codes;
NINH [15] is a deep method, which adopts a triplet loss to preserve
relative similarities; DSRH [46] aims to preserve multi-level
semantic similarity between multi-label images; DRSCH [43] is a
deep framework, which is optimized by triplet ranking loss; PDH
[52] is also a framework in which batches of triplet samples are
employed as the input of deep hashing architecture; StructDH
[35] is a structured deep hashing network embedded with hash
function learning; DCH [32], CSBT [3], ABC [22], and CPDH [16]
are all deep CNN networks which introduce binary appropriation
layers in the residual network. Since the recent CSBT [3], ABC
[22], and CPDH [16] all adopt ResNet50 as their backbone. For fair-
ness, we report the performance of our method using ResNet50 as
the backbone on three datasets.

For a more intuitive comparison, in this part, we only show the
performance enhancement of SSR and AAB, the speed up results of
AFR are reported in Sections 7.3 and 7.5.2. The re-ID performance
comparison with hashing state-of-the-art under different bit-
lengths are shown in Table 1 (on Market-1501), Table 2 (on
DukeMTMC-reID), and Table 3 (CUHK03-NP). We can see that on
the one hand, the proposed method outperforms the previous
studies by a large margin on three datasets, even compared with
the latest works based on the same deep neural network ResNet50
as ours, such as CSBT, ABC, and CPDH. On the other hand, compared
with the baseline(Sigmoid), our specially designed hashing relax-
ation method SSR outperforms by +(9.5%/14.9%) in rank-1/mAP
on Market-1501 with the longest 2048 bits in single query setting.
On DukeMTMC-reID, this enhancement is +(16.5%/25.2%). And on
CUHK03-NP, it is +(11.2%/ 12.5%) on CUHK03-NP-Labelled and
+(11.9%/11.5%) on CUHK03-NP-Detected. The accuracy enhance-
ment of AAB seems weak. However, according to the results in Sec-
tion 7.5.1, if we remove AAB, there would be a performance
deterioration when introducing attribute learning task. AAB actu-
ally turns the effects of attribute learning from negative to positive.

As we introduce attribute annotations into our system, we pre-
sent the comparisons with person re-ID methods which also lever-
age attribute information for fairness. Researches APR [18],
DHANet [34], APDR [17], AFFNet [25], and AANet [30] are listed
as competitors. Since we are the first to annotate the attribute
for CUHK03, there are only comparisons on Market-1501 and
DukeMTMC-reID. As shown in Table 4, our method outperforms
the best competitor AANet by +(0.9%/3.5%) in rank-1/mAP on
Market-1501 and +(2.0%/ 6.0%) in rank-1/mAP.

7.3. Robustness in the wild

To validate the effectiveness of our method under practical con-
ditions, we also study our performance on a large dataset Market-
1501+500K,which provides an additional 500, 000 distractors.

Experimental results on Market-1501+500K are shown in
Table 5. The state-of-the-art results on Market-1501+500K are
listed for comparison and they all employ ResNet50 as their back-
bone. Since the publicly available results of state-of-the-art on this
dataset are all non-hashing methods and use floating-point fea-



Table 1
The comparison with the hashing state-of-the-art methods on the Market-1501 dataset under different bit-lengths, Rank-1 accuracy (%), mAP (%), and search time are shown.

Methods Bits Single-query Multi-query
R1 mAP R1 mAP

CNNH [36] – 16.4 34.5
NINH [15] – 37.7 37.8
DSRH [46] – 34.3 42.3
StructDH [35]] – 48.0 48.2
CPDH [16] 128 83.1 67.2 –
baseline(Sigmoid) 78.3 63.1 79.9 66.0
baseline(SSR) 88.4 71.2 90.0 78.1
baseline(SSR) 89.1 71.7 90.6 78.6
+AAB

PDH [52] 47.9 26.1 56.8 31.7
CSBT [3] 42.9 20.3 –
CPDH [16] 88.4 74.9 –
baseline(Sigmoid) 512 84.1 70.0 85.7 71.5
baseline(SSR) 93.1 83.1 93.9 86.8
baseline(SSR) 93.6 83.6 94.2 87.6
+AAB

ABC [22] 81.4 64.7 –
CPDH [16] 89.5 77.1 –
baseline(Sigmoid) 2048 85.0 70.7 85.2 77.7
baseline(SSR) 94.5 85.6 96.2 89.7
baseline(SSR) 94.8 86.0 96.6 90.2
+AAB

Table 2
The comparison with the hashing state-of-the-art methods on the DukeMTMC-reID
dataset under different bit-lengths, Rank-1 accuracy (%), mAP (%) and search time are
shown.

Methods Bits DukeMTMC-reID
R1 mAP

ABC [22] 60.3 –
CPDH [16] 75.5 56.9
baseline(Sigmoid) 128 71.1 50.2
baseline(SSR) 79.0 61.1
baseline(SSR)+AAB 79.5 61.7

DRSCH [43] 19.3 13.6
CSBT [3] 47.2 33.1
HashNet [2] 40.8 28.6
DCH [32] 57.4 37.3
ABC [22] 512 65.5 –
CPDH [16] 80.6 65.3
baseline(Sigmoid) 76.6 61.0
baseline(SSR) 87.0 74.6
baseline(SSR)+AAB 87.5 75.0

ABC [22] 82.5 61.2
CPDH [16] 81.6 66.4
baseline(Sigmoid) 2048 71.4 53.0
baseline(SSR) 87.9 78.0
baseline(SSR)+AAB 88.4 78.6
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tures, in order to ensure the fairness and comprehensiveness of the
comparison, we have implemented the hashing version of a non-
hashing method MGN [31]. In this hashing-MGN implementation,
we use Sigmoid or Hardtanh as relaxation to obtain binary
features.

In addition to retrieval accuracy, the comparisons of computa-
tions and storage efficiency are provided. Note that in the applica-
tion of person re-ID, a target pedestrian image is often used to
compare with the stored gallery to find his or her other images.
Thus, following this setting, for each dataset, we first evaluate
the time for searching one query’s similar images in the whole gal-
lery, then report the memory for storing all the gallery features of
the dataset. Compared with the real-valued floating feature which
requires 32-bit for storing the value per dimension, binary hashing
code requires only 1-bit for each dimension. For fairness, we repro-
duce the searching process of these state-of-the-art according to
the feature dimension their paper reported.
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In Table 5, we can see that the baseline(SSR) still achieves
remarkable improvement over the baseline(Sigmoid)(from
81.9%/66.5% to 89.8%/76.6%in rank-1/mAP). Then, AAB gains
+0.6%/0.5% in rank-1/mAP. Besides, our re-ID accuracy surpasses
the state-of-the-art. Thereinto, although the search time of base-
line(SSR)+AAB (521.1 ms) is longer than the low-bit competitor
TriNet (252.7 ms), under AFR (the w is set 1e+05 here), our search
time is reduced to 107.2 ms, with an advantage of +14.5% in rank-1
and +24.7% in mAP over TriNet. And compared with hashing-MGN,
baseline(SSR)+AAB+AFR has 30-bits more attribute codes, but AFR
can save 79.5% of retrieval time while its performance is +0.1%/2.9%
higher than the strong competitor MGN (Hardtanh).
7.4. Ablation study on self-distilling smooth relaxation

To find how hyper-parameter a in Eq. (14) and the learning
method influence the final results of SSR, we first set experiments
with different a. Then, two types of distilling method end-to-end
and pretrained are implemented for comparison. In the end-to-
end mode, the model is trained in the way shown in Fig. 1, the tea-
cher model dynamically evolves as training proceeds, and the
informative sources distilled from teacher model also real-time
updates. While in the pretrained mode, the distillation process
includes two stages, the teacher model is trained in the first stage.
In the second stage, the student model distills knowledge from the
static and pretrained teacher model.

Besides, batch normalization (BN) is an approach which could
mitigate the problem of internal covariate shift, where parameter
initialization and changes in the distribution of the inputs of each
layer affect the learning rate of the neural network [12]. In [24], BN
was proved to be particularly effective on promoting person re-ID
accuracy. In our experiments, we find that the features relaxed by
the SSR could get more benefit from BN than the features relaxed
by the traditional activation function (which can be seen in
Table 6). Thus, although the effect of BN is not our contribution,
we also present the results with/without BN.

The experimental results on Market-1501 are shown in Fig. 5.
We see that the upper performance limits of two types of distilla-
tion method are the same, which indicates the informative repre-
sentation learning relies more on optimization target loss



Table 3
The comparison of our method with the hashing state-of-the-art methods on the CUHK03-NP-Labelled, UHK03-NP-Detected dataset under different bit-lengths, Rank-1 accuracy
(%), mAP (%) and search time are shown.

Methods Bits Labelled Detected
R1 mAP R1 mAP

CPDH [16] – 56.6 52.0
baseline(Sigmoid) 55.6 51.2 52.2 48.3
baseline(SSR) 128 60.7 54.4 57.0 56.5
baseline(SSR) 61.2 54.9 57.4 56.9
+AAB

DRSCH [43] 25.4 – –
CSBT [3] 55.5 – –
DCH [32] 44.4 41.3 –
CPDH [16] 512 – 63.2 58.7
baseline(Sigmoid) 59.4 56.3 56.2 53.8
baseline(SSR) 72.7 69.3 69.3 65.0
baseline(SSR) 73.1 69.8 69.6 65.4
+AAB

CPDH [16] – 66.4 61.9
baseline(Sigmoid) 63.2 58.6 60.1 55.0
baseline(SSR) 2048 74.3 71.0 71.9 66.2
baseline(SSR) 74.8 71.6 72.5 66.9
+AAB

Table 4
The comparison of our method with the state-of-the-art methods using attribute on
the Market-1501 and DukeMTMC-reID dataset, Rank-1 accuracy (%) and mAP (%) are
shown

Methods Market-1501 DukeMTMC-reID
R1 mAP R1 mAP

APR [18] 87.0 66.9 73.9 55.6
DHANet [34] 91.3 76.0 81.3 64.1
APDR [17] 93.1 80.1 84.3 69.7
AFFNet [25] 93.9 81.7 84.6 70.7
AANet [30] 93.9 82.5 86.4 72.6
baseline(SSR)+AAB 94.8 86.0 88.4 78.6
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function than on distilling way. However, two-stage distillation
needs a longer training time: in our experiments on Market-
1501, the training time of using pretrained distillation is 2.2 times
longer than end-to-end. So, we recommend using the end-to-end
SSR. For the influence of a, take the end-to-end curves as an exam-
ple, we observe that under the setting without BN, when a changes
from 0 to 0.7, the rank-1 accuracy and mAP gradually increase from
92.6%/79.9% to 93.9%/83.5%. It indicates the importance of self-
distillation in the re-ID task. When a increases to 1, the rank-1
accuracy and mAP of the model decrease to 93.5%/81.4%, which
indicates that an over-increased a could break the balance of
multi-task learning and compromise the feature representation.
Similarly, under the setting with BN, rank-1 and mAP curves also
rise first, then fall, and the best re-ID performance is obtained
when a ¼ 0:3. Therefore, we use a ¼ 0:3 when BN is adopted,
and a ¼ 0:7 when BN layer is removed.
Table 5
The comparison of our method with the state-of-the-art methods on the Market-1501+50

Methods Feature’s R1
Dim./Type

2Stream [50] 4096/float 68.3
APR [18] 2048/float 75.4
TriNet [10] 128/float 74.7
MGN(Sigmoid) 2048/binary 82.3
MGN(Hardtanh) 2048/binary 89.0
baseline(Sigmoid) 2048/binary 81.9
baseline(SSR) 2048/binary 89.8
baseline(SSR)+AAB 2048/binary 90.4
baseline(SSR)+AAB+AFR 2078/binary 89.1
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We then follow the best performance setting of a on Market-
1501, and validate the effectiveness of SSR on other three datasets.
In this set of experiments, except for using the traditional activa-
tion function as relaxation, we add the results of using DSH [20].
DSH is a competitive relaxation method designed for hashing
image retrieval, which proposes a regularizer to fit the shape of
the feature distribution to the distribution of hash codes. We
implement this relaxation and applied it in our person re-ID sys-
tem for comparison. In addition, we also report the performance
of teacher descriptor (SSR) and student descriptor (SSR) in SSR.
We use Sigmoid, HardSigmoid, Tanh, Hardtanh activation func-
tions, and DSH regularizer as relaxation, and compare with our
method. The performance results are shown in Table 6. According
to the results, we conclude as follows:

First, whether it is with or without BN, DSH [20] performs better
as relaxation than traditional activation functions, which is in line
with the results reported in [20]. And our student descriptor can
always achieve higher performance than DSH. This is because,
compared with the activation function, although DSH can make
the distribution of features more effectively fit the true distribution
of binary codes, the design concept of DSH and activation function
is similar, and both impose restrictions on the distribution of fea-
tures. While SSR introduces less hard regularization (such as
restricting the region that features distribute). Instead, it learns
informative semantic knowledge from self-distillation, thus
achieves stronger feature representation.

Second, in the scene without BN, DSH surpasses our teacher
descriptor with a slight advantage, but in the case of BN, DSH failed
to do so. This shows that in person re-ID, the hard relaxations (such
0k dataset, Rank-1 accuracy (%) and mAP (%) are shown

mAP Storage Search
Memory Time

45.3 7812.5 MB 8084.8 ms
49.8 3906.3 MB 4042.4 ms
53.6 244.1 MB 252.7 ms
66.6 122.1 MB 521.1 ms
75.4 122.1 MB 521.1 ms
66.5 122.1 MB 521.1 ms
76.6 122.1 MB 521.1 ms
77.1 122.1 MB 521.1 ms
78.3 123.7 MB 107.2 ms



Table 6
Performance of using relaxation of SSR, Sigmoid, Hardsigmoid,Tanh, Hardtanh, and DSH, with/without bn on the Market-1501, DukeMTMC-reID, CUHK03-NP, Rank-1 accuracy
(%), and mAP (%) are shown

Relaxation Market-1501 DukeMTMC CUHK03- CUHK03-
with -reID NP-Labelled NP-Detected

BN R1 mAP R1 mAP R1 mAP R1 mAP

Sigmoid � 85.6 71.2 72.2 53.3 66.6 60.7 60.6 55.4
HardSigmoid � 86.4 72.8 72.3 53.5 66.8 60.8 60.8 55.5
Tanh � 93.0 82.4 85.0 72.9 72.0 66.8 69.2 64.3
Hardtanh � 93.2 82.5 85.2 73.0 72.2 66.9 69.3 64.4
DSH � 93.5 83.1 85.6 74.1 72.6 67.8 69.5 65.2
SSR � 93.3 82.9 85.3 73.9 72.4 67.6 69.3 65.0
SSR � 93.9 83.5 86.0 74.4 72.9 68.2 69.9 65.5

Sigmoid U 78.4 60.5 66.5 48.9 53.7 49.1 51.5 45.8
HardSigmoid U 78.5 60.8 66.7 49.0 53.8 49.4 51.7 45.9
Tanh U 93.8 83.6 86.5 74.1 73.5 68.5 71.2 63.4
Hardtanh U 93.9 83.8 86.7 74.5 73.7 68.7 71.3 63.6
DSH U 94.0 85.3 87.6 78.0 74.1 70.9 71.7 66.1
SSR U 94.2 85.4 87.8 78.1 74.2 71.1 71.9 66.3
SSR U 94.8 86.0 88.4 78.6 74.8 71.6 72.5 66.9

Fig. 5. Rank-1 and mAP curves of the end-to-end and pretrained distilling method as function of alpha on Market-1501.
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as activation functions or DSH) that greatly change the feature dis-
tribution can hardly coexist with BN. This may be because, accord-
ing to the description in [12], BN will process the features into a
form close to the Gaussian distribution, which will be destroyed
by these hard relaxations, thus affects the robustness of feature
representation. Therefore, we recommend using our SSR as the
relaxation in the application of hashing person re-ID, especially
when using BN at the same time.

7.5. Ablation study on attribute-based fast retrieval

In this section, we give a detailed study over different settings
of the proposed AFR. First, we study the effectiveness of
attribute-guided attention block, and then we analyze the experi-
mental results of fast retrieval.

7.5.1. Effectiveness of attribute-guided attention block
In the study of AAB, we first discuss the determination of the

hyper-parameter b in Eq. (14), which controls the strength of attri-
bute learning. We observe the influence of b from two aspects: the
attribute prediction precision and re-ID accuracy. We follow the
attribute accuracy evaluation method of [18], and use the mean
accuracy of 30 attributes in our system on Market-1501. The
experimental results are shown in Fig. 6.

We can see that, in Fig. 6(a), the prediction accuracies of the
attribute learning without AAB and attribute learning with AAB
both increase as the values of b becomes larger when b < 0.3 (when
b =0, there is no attribute learning thus the accuracy is also 0),
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within this range, more weights the attribute learning loss has,
more benefits the attribute prediction will gain. The best perfor-
mances of two models are both achieved at b = 0.3 and equal to
93.8%. This implies that the AAB doesn’t promote the attribute
learning ability. In Fig. 6(b), we find that in the setting of person
re-ID without AAB, the re-ID accuracy drops along with the
increasing of b, which means simply adding attribute loss to re-
ID task can compromise the feature representation. While in the
setting person re-ID with AAB, by leveraging the spatial properties
and high-level semantic cues contained by the attribute, re-ID
accuracy gradually increases from 94.5% to 94.8% when b changes
from 0 to 0.3. When b > 0:3, performance drops with a larger b.
This indicates that in an appropriate weight of attribute loss, with
AAB adopted, the attribute learning can refine the ID features
discrimination.

We then set b ¼ 0:3 and validate the effectiveness of AAB in four
datasets Market-1501, DukeMTMC-reID, CUHK03-NP-Labelled,
and CUHK03-NP-Detected. The experimental results are shown in
Table 7, we set four groups of experiments to observe the influence
of attribute learning and the AAB. First, in the comparison of mode
a with b, we can see that without attribute information, AAB can
help to enhance the feature representation only +0.1%/0.1% in
rank-1/mAP on average. Second, in the comparison of mode a with
c, a clear re-ID accuracy degradation can be observed when intro-
ducing attribute learning without AAB adopted, which proves that
the heteroscedasticity [33] of attribute and ID learning can cause
re-ID deterioration. In the comparison of mode c with d, we see
that the AAB brings significant re-ID promotion, on Market-1501,



Fig. 6. The attribute prediction accuracy and person re-ID accuracy curves of the proposed method as function of b on Market-1501.
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the enhancement is +(0.7%/0.9%) in rank-1/mAP, on DukeMTMC-
reID, CUHK03-NP-Labelled, and CUHK03-NP-Detected, the
enhancement are +(0.8%/1.0%), +(0.9%/1.1%), and +(1.0%/ 1.2%). It
should be noted that these performance gains include two parts,
the promotion from ID information-based attention and attribute
information-based attention. But as shown in the comparison of
modes a and b, the performance promotion from ID information-
based attention is small, which verifies the effectiveness of AAB
when attribute learning is introduced into person re-ID.

7.5.2. Effectiveness of fast retrieval
In this section, we follow the hyper-parameter setting of attri-

bute learning determined in last part, and report the experimental
results of AFR. The line charts of numerical results on Market-1501,
DukeMTMC-reID, CUHK03-NP-Labelled, and CUHK03-NP-Detected
are shown in Fig. 7. The gallery sizes of four datasets are 15,912,
17,661, 5,328, and 5,332. Apparently, when w is set the same as
the gallery size, the accuracy will be equal to not employing AFR
( i.e., baseline(SSR)+AAB). For the convenience of comparison, we
show the performance curves from w = 50 to w = 15,000 on
Market-1501 and DukeMTMC-reID, and from w = 50 to w = 5000
for CUHK03-NP-Detected and CUHK03-NP-Labelled.

Two points can be summarized from Fig. 7. First, on all datasets,
rank-1 accuracies always increase with a larger w, until w is close
to the number of gallery pictures, the rank-1 performance
approaches the baseline(SSR) +AAB settings (which are reported
in Tables 1–3). Second, the mAP curves first increase with a larger
w and then gradually decline. We think this mAP advantage AFR
gains over the baseline(SSR) +AAB could come from the attribute
description, which helps roughly filter examples in the first stage
of faster-retrieval. Specifically in our experiments, on Market-
1501, DukeMTMC-reID, CUHK03-NP-Labelled and CUHK03-NP-
Detected, the best mAPs are respectively achieved under the set-
tings of w = 1,111, w = 2,297, w = 1,500, w = 1,500, where perfor-
mances are 93.7%/87.2%, 87.0%/80.6%, 71.6%/68.2%, and
74.2%/72.8% in rank-1/mAP, respectively.

In order to provide the person re-ID community with more
thoughtful recommendation for the use of AFR, we also study the
recommended value of w. For each dataset, although Rank-1 will
increase as w increases, mAP reaches its peak before w increases
to gallery size. Therefore, based on the consideration of finding
the optimal mAP for w, we think that it may be possible to find
some rules about w through the re-ID accuracy of using only attri-
bute codes to search. We did the following experiment: For each
dataset, we only use attribute codes to do re-ID and observe the
performance of rank-w. As shown in Fig. 7, the dashed lines show
the performance obtained by using only attribute codes to search
on the different datasets. In the end, we got rank-1111 on
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Market-1501, rank-2297 DukeMTMC-reID, rank-1500 on
CUHK03-NP-Labelled, and rank-1500 on CUHK03-NP-Detected.
They were 97.1%, 96.9%, 96.8% and 96.8%, respectively. This shows
that although the optimal value of w for mAP is different on differ-
ent datasets, we can still use only the attribute codes to retrieve
and observe the performance, so as to quickly find the recom-
mended value of w on each dataset. Based on the research on four
datasets, we recommend that when using AFR on a dataset, first
use only attribute codes to search, and then find a rank-w approx-
imately equal to 97%. This w is likely to achieve the optimal mAP.

The rank-1 performance would surely increase along with thew
increasing, but it is worth noting out that a smaller w can lead to
lower computational complexity, as well as a shorter search time.
Therefore, to validate that the APR genuinely make sense, we pro-
pose an evaluation method:

Take Market-1501 dataset as an example, the gallery has 19,732
pictures, the best performance of our framework needs a bit-length
of 2,048. To decrease the search time, there are two methods:
reducing the bits number of features, for example, setting a lower
bit-length such as 128, 256 or 512; another is adopting the AFR, by
setting a different w, the approach could save time in various
degrees. Both these two methods can lead to a decline in re-ID per-
formance. We observe when they take equal time consuming,
whether the re-ID accuracy employs the AFR outperforms the
strategy of reducing bit-length.

The numerical results are reported in Table 8 for different con-
ditions with bit limitation on each dataset. We find the w that
makes the AFR match the search time of the method lower dimen-
sion ( i.e., reducing the bit-length to save search time) under differ-
ent bit limitations. As is shown, in all cases of low-bit setting, our
strategy outperforms the method lower bit-length by a consider-
able margin. Specifically, for example, when we match the search
time of AFR to the 128-bit condition, the mAP advantages of AFR
over reducing bit-length gained on Market-1501, DukeMTMC-
reID, CUHK03-NP-Labelled and CUHK03-NP-Detected are +14.4%,
+15.1%, +8.3%, +5.7%, respectively. Although faster-retrieval cannot
save storage memory, experimental results show that this strategy
can preserve an excellent re-ID performance while greatly decreas-
ing time-consumption. The value of w on the left side of Table 8 is
as follows: Take Market-1501 as an example, which has 15912
images in its gallery set. Suppose that the time required to calcu-
late the Hamming distance of a pair of point-to-point (that is, an
XOR operation) is T. When we want to make the calculation time
of the Hamming distance of AFR (w=W) equal to the 128-bits of
the non-AFR model, we can formulate: 128*15912*T=30*15912*T
+2048*W*T. Then we get W�761, which is the ideal value of w.
And since AFR has an extra sorting compared to no-AFR, in the real
measurement, the value of w should be smaller than 761. Thus, we



Table 7
Performance of our method with/without AAB, and with/without attribute learning on the Market-1501, DukeMTMC-reID, CUHK03-np, Rank-1 accuracy (%), and mAP (%) are
shown

Mode with with Market-1501 DukeMTMC CUHK03- CUHK03-
attribute AAB -reID NP-labelled NP-detected

learning R1 mAP R1 mAP R1 mAP R1 mAP

a � � 94.5 85.6 87.9 78.0 74.3 71.0 71.9 66.2
b � U 94.6 85.7 88.0 78.1 74.4 71.2 72.0 66.3
c U � 94.1 85.1 87.6 77.6 73.9 70.5 71.5 65.7
d U U 94.8 86.0 88.4 78.6 74.8 71.6 72.5 66.9

Fig. 7. Performances of AFR strategy under differentw (returning different numbers
of candidates of first-step retrieval for second-step searching) on the Market-1501,
DukeMTMC-reID, CUHK03-NP-Detected (CUHK03-NP-D.) and CUHK03-NP-Labelled
(CUHK03-NP-L.) datasets.
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will use 761 as the reference value and gradually reduce the value
of w to finally obtain the final value of w (=553) taken in the AFR, to
fit the search time same to the different number of bits without
AFR.
Table 8
Performance comparisons of AFR and reducing bit-length under the same real search time o

Datasets with the AFR

Strategy R-1 mAP

Market- w = 553 91.8 86.1
1501 w = 1067 93.3 86.9

w = 3105 94.2 86.5

Duke w = 654 80.1 76.8
MTMC- w = 1352 84.6 78.6
reID w = 3352 87.8 80.1

CUHK03- w = 265 65.7 63.2
NP- w = 510 70.9 67.8
Labelled w = 951 73.5 71.7

CUHK03- w = 265 63.1 62.6
NP- w = 510 67.5 66.7
Detected w = 951 70.1 67.7
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7.6. Study of the generality

In this section, we study the generality of our method, including
two subsections, the generality of AFR and the generality of using
stronger baseline.

7.6.1. Generality of AFR
In addition to being applied to hashing person re-ID, AFR can

also speed up the general (non-hashing) person re-ID method.
We use two non-hashing state-of-the-art person re-ID methods
MGN [31] and ABD-Net [5] to verify the effectiveness of AFR.
Unlike the MGN in Section 7.3, the non-hashing methods here do
not use the nonlinear function to generate binary codes, but use
the original floating features of the algorithm to perform the
second-stage retrieval of AFR. The results on the large dataset
Market-1501+500k can best demonstrate the benefits of AFR. As
shown in Table 9, based on the floating features of MGN [31] and
ABD-Net [5], we add 30-bit binary attribute codes to implement
AFR. Using the w value method introduced in Section 7.5.2, we
set w as 1e+05 and let the retrieval rank-w of the attribute codes
in the two methods equal 96.8% and 97.0%. We can see that AFR
significantly reduces the search time at the cost of slight reduction
in Rank-1, and obtains 1.3% and 1.2% increases in mAP on MGN
[31] and ABD-Net [5], respectively. This illustrates the generality
of AFR in non-hashing methods.

7.6.2. Generality of using stronger baseline
In our framework, in order to reduce the complexity of the net-

work structure and the amount of calculation as much as possible,
we use a simple PCB structure as the base model. In this part, we
verify the generality of SSR and AAB by observing whether they
can still bring performance gains when using a stronger baseline.
In the literature [38], the authors designed a powerful baseline
AGW [38] by analyzing the advantages of the existing person re-
ID methods, and achieved state-of-the-art both in single- and
multi-modality re-ID tasks. The main innovation of AGW [38] lies
in the fusion of non-local attention, generalized-mean pooling,
n the Market-1501, DukeMTMC-reID, CUHK03-NP, Rank-1(%) and mAP(%) are shown.

Search with lower bit-length

Time Bit-length R-1 mAP

1.04 ms 128-bits 89.2 71.7
2.07 ms 256-bits 92.5 79.3
4.15 ms 512-bits 93.6 83.6

1.15 ms 128-bits 79.5 61.7
2.30 ms 256-bits 83.9 69.1
4.60 ms 512-bits 87.5 75.0

0.35 ms 128-bits 61.2 54.9
0.69 ms 256-bits 68.8 62.0
1.39 ms 512-bits 73.1 69.8

0.35 ms 128-bits 57.4 56.9
0.69 ms 256-bits 67.2 59.4
1.39 ms 512-bits 69.6 65.4



Table 9
The re-ID performance of MGN, MGN+AFR, ABD-Net, and ABD-Net +AFR on the Market-1501+500k dataset, Rank-1 accuracy (%) and mAP (%) are shown

Methods Feature’s R1 mAP Storage Search
Dim./Type Memory Time

MGN [31] 2048/float 91.1 78.2 3906.3 MB 4042.4 ms
MGN [31]+AFR 2048/float+30/binary 90.5 79.5 3907.9 MB 811.6 ms

ABD-Net [5] 2048/float 91.0 79.7 3906.3 MB 4042.4 ms
ABD-Net [5]+AFR 2048/float+30/binary 90.5 80.9 3907.9 MB 811.6 ms

Table 10
Performance of using the AGW as baseline on the Market-1501, DukeMTMC-reID, CUHK03-NP, Rank-1 accuracy (%), and mAP (%) are shown

Method Market-1501 DukeMTMC CUHK03- CUHK03-
-reID NP-Labelled NP-Detected

R1 mAP R1 mAP R1 mAP R1 mAP

baseline(Sigmoid) 85.0 70.7 71.4 53.0 63.2 58.6 60.1 55.0
AGW(Sigmoid) 85.3 71.7 72.1 53.5 65.4 60.7 62.9 57.8

baseline(SSR) 94.5 85.6 87.9 78.0 74.3 71.0 71.9 66.2
AGW(SSR) 94.6 86.5 88.4 78.3 75.9 73.0 74.4 68.3

baseline(SSR)+AAB 94.8 86.0 88.4 78.6 74.8 71.6 72.5 66.9
AGW(SSR)+AAB 94.9 86.9 88.8 78.8 76.3 73.5 74.9 68.9
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and weighted regularization triplet loss. Table 10 shows the perfor-
mance of SSR and AAB when AGW is the baseline.

We can see that on the one hand, when our baseline is replaced
with AGW, the performances on the three datasets have been
improved. Among them, on the CUHK03-NP-Labelled and
CUHK03-NP-Detected, in the SSR experiment, the performance
gains obtained by AGW are +1.6%/2.0% and +2.5%/2.1% respectively
in Rank-1/mAP. In the SSR+AAB experiment, the gains are
+1.5%/1.9% and +2.4%/2.0%. On the other hand, we can also see that
when AGW is used as the baseline, the performance gains obtained
by SSR and AAB are similar to when using our baseline. This con-
firms that the proposed SSR and AAB have good generality when
using a different baseline.
8. Conclusion

In this paper, we focus on both the accuracy and efficiency of
deep hashing person re-ID. First, we propose an attribute-based
fast retrieval (AFR) for hashing re-ID, AFR leverages the attribute
prediction of the model which is trained in a binary classification
manner tailor-made for hashing. The attribute information is also
used to refine the global feature representation by the attribute-
guided attention block (AAB). Then, to fully exploit deep represen-
tation to generate the hash codes, we propose a binary code learn-
ing method self-distilling smooth relaxation (SSR). Four
authoritative public benchmarks (Market-1501, Market-1501
+500K, CUHK03, and Duke-MTMC-reID). The experimental results
indicate that with the SSR and AAB, we surpass all the state-of-
the-art hashing methods, and compared with reducing the number
of feature bits, the AFR strategy is more effective to save search
time.
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